
1. Overview

Experience with the CAIS

Michael F. Tighe
In te r me t r ics, I 11c .
Cambridge, Mass.

Intermetrics is currently using an earlier version of the CAB (based on CAIS 1.2) i n
the implementation of it's line of Byron'/Ada* APSE products. This proto-C' AIS
provides all the Byron tools, Ada compiler, linker-driver, Ada program library
manager, etcetera with a standard interface to the underlying operating system.
Written in Ada and using Ada language features to separate specification from irnple-
mentation, this proto-CAIS is curreutly implemented on four different operating s.5-

terns, representing two different machine architectures including

VAX/VMS (Digital Equipment Corporation)

MVS/370 (IBM)

CMS/370 (IBM)

U'L'S 3.5 (Amdahl U K U 3 derivative running under VM on the 370).

In progress is the task of moving the proto-CAIS (thus the Byron APSE,) to t h < *
Sperry 1100 series (a third hardware class and fiftii operating system).

In terrnetrics is using th i s technology to permit the primary developr~lent teani I O

proceed doing main-line development work on the Byron U S E , while r e h o s t tc; lr i~-

t,ake either source or object niodules (depending o n the target harrlware) allti i i i s t : i I I
the most recent version of the Byron APSE on these new machines for testing nrlci

2 .
1 .

3 .

Ada is a registered trademark of the U.S. Government Ada .Joint Prograin Otticr.
13yron is a registered tratleriiark 01 Interrnetricr, Inc.

' JNIX is a trademark of [Jcll Laboratories.

D.2 .4 .1

demonstration to customers. This process allows the various rehost teams to follow
the primary development team very closely, at times being only two or three weeks
behind the primary team in terms of supported capability. Each rdiost team
con thues work on developing contract- or host-specific fcaturcs for the ret iostd
c o rt l pi le r .

2. Proto-CAIS Usage in the Uyron/Ada Compiler

T h e proto-CAIS is the primary database used by the functions that irriplcrlielit I
Ada Program Library functions of the Byron APSE. The Program Library wrilairis

various representations of the Ada program as the compiler translates it from text, 10
object code. The retcritiori of theso representatioris i n thr Prograrri Library is i i i i d (a r

user control but usually include

an abs trac t syntaz t r e e (AST),

a Diana representation of the program,

an internal form used for code generation (called Bill),

and the linkable object module.

Each form of the program representation is kept for each smallest compilable u n i t of
the language, as the programmer can present his source to the Ada compiler in a n y of
a variety of sequences and portions. It is necessary to organize these representatioiis
in an orderly fashion w h i c h is related to the name of the entity that they represtlit.
Additionally, there are inter-rclatioiiships between the represvntations. For i~istaiicv.
each specific object module is derived from a c o r r c ~ s p o l ~ d i n g spec-itir U i l l
representation which is derived from a corresponding specitic Diana representation
ivhich in turn depends on i t s specific abstract syntax tree represenlation. Conipilatiuii
dependencies of the w i t h statements in the source are reprost~rited a s Clept~i i~ l t~ i ic* ic~~

between the Corresponding Diana representations. Date/tirne of compile arid ot hc.r
iriforrriation is kep t as well.

0

D.2 .4 .2

~- ~ _ _ _ _ ~
-- - ~ ~~~ . .

Y
Uh,

Each uuit is composed of a spec and a body, with the possible inclusion of a subunll .
Each spec or body is composed of the underlying representations (/om) of the source
(AST, Diana, Bill, Objmod).

One specific implementation detail is that all file objects (the CAIS f i l e node), whi(:h
represent the Diana or AST or Objmod, descend from the collection. The spec a n d
body forms of the unit have secondary (rather than primary) links to the file nodes.

This grouping of compilation information into catalogs with all the variolis
representations and attributes for each compilation unit represents the set of data
managed by the proto-CAIS. This information is stored by the proto-CAIS in
underlying host files. Each representation (AST, Diana, Bill, Objmod) of a
compilation unit is kept as a separate file on the host. Relationships and attributes
are stored in a sinble database represented by three files. The accompanying
diagrams are intended to be suggestive of the use that the program library makes of
the proto-CAIS rather than an exhaustively complete example.

Figure 2 - Catalog Internals

Intermetrics has recently had experience in replacing the p ro to -CdS with a totally
re-written implementation to improve performance of the too! set using the proto-
CAIS. Preliminary performance analysis indicated that the initial implementation of
the proto-CAIS w a s a drain on the performance of the system, and it was targeted
for a rriajor upgrade in Performance. The entire rinderlying irnpleriientation of t t i (%

proto-CAIS w a s redesigned and reimplemented in light of the pcrforniance data, and
the new implementation is currently installed in the latest version *>f the .-Ida
c*ompiler and its tools.

At present the new implementation is perforrriirig up to expectations with 110

silomalies reported due to differences in irnplerrierit;itiori. It is important to note tli;it
o n l y rrlinor changes (less than 500 lines of Ada code, excluding the new proto-(';\ls
code) were made in the corripiler and tool sources (40OKSLOC) to allow this r i e i s
iiriple~rien~atiori to be installed. by
c tiangt!d functionality o f the ricw irriplenientation of the proto-CIl1S whic-ti i v ~ ~ r c ~
intended to improve performance without loss of portability. Sonie sniall number of
rharigc:s were niadc to clear up anomalies i n the prelirtiirinry irnplernentation and
cl(-firlition of t t i v proto-C:A IS. llad I I O changcs ir i functionality been required, there

Most of tliese source changes were required

D.2.4.4

t ------..

would have been no source changes required in the sources of the tool set.
i

4. Conclusion

Intermetrics experience is that the Ada package construct, which a l lows separation of
specification and implementation allows specification of a CAIS that i s transpori,ahle
across varying hardware and software bases. Additionally, the CAIS is an excellent
basis for providing operating system functionality to Ada applications. By allowirig
the Byron APSE to be moved easily from system to system, and allowing sigriifirarit
re-writes of underlying code, Ada and the CAIS provide portability as well as
transparency to change a t the application/operating system in terrace level.

D.2.4.5

